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We study a cluster Monte Carlo method with an adjustable parameter: the number of energy
levels of a demon mediating the exchange of bond energy with the heat bath. The efficiency of the
algorithm in the case of the three-dimensional Ising model is studied as a function of the number
of such levels. The optimum is found in the limit of an infinite number of levels, where the method
reproduces the Wolff or the Swendsen-Wang algorithm. In this limit the size distribution of flipped
clusters approximates a power law more closely than that for a finite number of energy levels.
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I. INTRODUCTION

One way to calculate thermodynamical quantities of
model systems is by averaging over a sample of states
selected by a Monte Carlo procedure [1]. This approach
is especially useful for models that have not been solved
by rigorous methods. In the course of time a number of
different techniques have been developed. For example,
in the so-called simple sampling method the states are
chosen independently with equal probability. Especially
when this method is applied at low temperatures, one
tends to choose states with small Boltzmann factors, that
do not contribute significantly to the thermal averages.
Thus, at low temperatures the simple-sampling method
becomes inefficient. A more efficient sampling procedure
is “importance sampling:” one generates a Markov chain
of states, with transition probabilities chosen such that
each state occurs with the ensemble probability. The
canonical ensemble is used most often, but alternative en-
sembles like the microcanonical ensemble have been used.
In most applications of the Monte Carlo method, consec-
utive microstates in the Markov chain differ by only one
or two particles. Therefore, in critical systems, where
correlations over large distances exist, the effectivity of
such importance sampling methods decreases because of
the mechanism of critical slowing down.

In some special cases such as the Potts model, effective
methods have been found for simulation in the neighbor-
hood of the critical point. The equivalence of the Potts
model [2] with the random-cluster model can be used to
effect the change of large clusters of spins instead of sin-
gle spins. This canonical importance sampling method
with clusters was introduced by Swendsen and Wang [3).

A different approach to suppress critical slowing down
in the case of the Potts model was made by Hu [4]. He
introduced a method that may be characterized as simple
sampling with respect to the number of states of the Potts
model. Therefore critical slowing down is absent but the
sampling method has been argued to become less effective
for large system sizes when the number of states differs
appreciably from 1 [5].

Recently Creutz [6] proposed a microcanonical impor-
tance sampling method with clusters. In this method, the
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system includes “demons,” which can absorb or supply
the energy change of a bond, when one of the spins con-
nected by that bond is inverted. Equilibration is estab-
lished by rearranging the demons over the bonds. Creutz
also noted that the Swendsen-Wang cluster method can
be formulated using demons. Then, the demons have an
infinite number of states and are brought in equilibrium
with a heat bath after each interaction with the spin sys-
tem.

The microcanonical method by Creutz differs in two
respects from the Swendsen-Wang method. On the one
hand, he updates the spins according to a deterministic
rule, and on the other hand, he uses demons with a fi-
nite number of energy levels. An attractive aspect of the
deterministic updating method is that it should enable
a fast algorithm. However, both aforementioned differ-
ences may affect the efficiency of the method: it remains
to be investigated how the critical slowing down is af-
fected. For an assessment of the method, separation of
the two effects is desirable.

In this work we study the effects of a variation of the
number of energy levels of the demons on the efficiency
of a canonical cluster method. In principle such a study
could yield Monte Carlo methods that are more effective
than the presently known cluster algorithms. In Sec. II
we formulate canonical sampling methods using interme-
diary demons, and review some possibilities for the bond-
updating mechanism. In Sec. IIl we present the results
of Monte Carlo calculations and in Sec. IV we draw some
conclusions.

II. THE ACCESS TO THE ENERGY RESERVOIR

In importance-sampling methods energy is transferred
to and from a heat bath. In our description of this energy-
exchange mechanism we will make use of a system of Ising
spins (S = £1). In the Metropolis method the reservoir
couples to the spins (in the case of Kawasaki [7] spin
exchange dynamics it couples to pairs of spins). When
a transition is made, the associated energy is transferred
to or from the reservoir. In a microcanonical sampling
method (8] the reservoir consists of a so-called demon
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traveling along the sites. The spin at a site visited by
the demon is flipped if the demon can change its energy
by an amount that compensates for the change of energy
of the spin system. Thus, given the energy and the energy
spectrum of the demon, the microscopic dynamics of the
spin system is deterministic.

Also in the case of other ensembles the transition prob-
abilities can be formulated using a demon. A finite but
large reservoir is used in the Gaussian [9] and dynamical
ensemble [10]. An intermediary demon equilibrates with
this reservoir. The amount of energy stored in the reser-
voir determines the probability that energy levels of the
demon are occupied. The probability of a transition in
the spin system depends on the amount of energy stored
in the reservoir. In the Metropolis spin updating method
according to the canonical ensemble, the demon equili-
brates with an infinite heat bath at temperature T prior
to every site visit. The transition probabilities are thus
determined by the temperature and the energy spectrum
of the demon. We choose demons with equidistant non-
degenerate energy levels. The level spacings are multiples
of the Ising energy quantum 2J where —JS§;S; is the in-
teraction energy of a pair of neighboring spins S; and S;.
If the demon has an infinite number of energy levels, it
can always accept energy from the spin system. Thus a
transition that lowers the energy of the spin system is
always made. There is, however, a finite probability that
the demon is in a low-energy level and cannot provide the
energy to make the reverse transition. That transition is
therefore made with the probability exp(—BAE), where
AFE is the energy of the spin system after the transition
minus that before the transition. The transition proba-
bilities thus equal those of Fosdick [11].

In another extreme case the demon has only two en-
ergy levels. The level spacing is chosen to be |AE|,
which depends on the local configuration. The demon is
able to accommodate the energy change with probability
1/(ePAF +1). In this case the transition probabilities are
those of Yang [12].

The energy spectrum of the demon determines the mi-
croscopic dynamics. However, it is plausible that in this
case the choice of the demon does not influence those
critical dynamic properties contained in the Ising univer-
sality class with spin-flip dynamics. Results for critical
exponents of systems with spin-flip dynamics are given
in [13].

For cluster methods the heat bath couples to the bonds
in the lattice. The bonds between interacting spins can
be active or inactive. The state of a spin can only be
changed if all spins connected to it by active bonds are
changed at the same time in a compatible way. This de-
fines the process of cluster construction used by Creutz
[6]. For simplicity we consider pairwise interactions.
More general constructions were treated by Kandel et
al. [14]. An extension using dual spins was given by An-
dreichenko [15].

The relation between the canonical and microcanonical
cluster methods is analogous to that described above in
the case of single spin dynamics. Whereas in the micro-
canonical process demons interact only with the bonds,
in the canonical cluster formation process the demon is
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brought in equilibrium with an infinite heat bath at tem-
perature T before every bond visit. We denote the num-
ber of levels of the intermediate demon by n . The level
spacing is chosen equal to the bond energy quantum 2J.
We consider the dependence of the dynamics on n. There
is a probability

exp(—2nJ/kT) (1)

) exp(—25J/kT)

=1

P, =

that the demon is in its highest energy level. Then it
cannot absorb a change of energy associated with a bond
between a pair of antiparallel spins: this pair of spins
has to be flipped simultaneously and the bond connecting
this pair is active in the cluster formation process.

The probability that the demon is in its lowest energy
level equals

exp(—2J/kT)

Z exp(—23J/kT)

=1

P, =

(2)

A bond between parallel spins will therefore be active
in the cluster formation process with a probability P,.
The spin updating operation comprises the simultaneous
inversion of all the spins in a cluster connected by active
bonds.

In the limit n — oo, the bond probabilities are such
that the critical Ising model maps on the random-cluster
model at its percolation threshold [2]. They satisfy
1—-P, =1and 1— P, = exp(—2J/kT): these are the
probabilities according to Swendsen and Wang. For finite
n both probabilities acquire the same factor 1 — P,, so
that the percolation threshold will be exceeded. There-
fore, in the limit of large L, we expect the best efficiency
of a cluster algorithm for n — oco. For finite n the perco-
lation and the Ising transition decouple and the clusters
become too large when L — oo: their average size will
approach a nonzero fraction of the system. However, for
finite L the optimum may be at n < co. An interesting
question is how the dynamics of the cluster process, in
particular the efficiency of model simulations, will depend
on the choice of n for finite systems.

III. MONTE CARLO SIMULATION

Given a method for the partition of the lattice in clus-
ters of spins, one is free to choose the rule to update
one or more clusters of spins. For the Ising model with

‘nearest-neighbor interaction and Swendsen-Wang bond

probabilities, Kerler [16] has compared the merits of sev-
eral updating methods. In the method of Wolff [17] one
site is chosen randomly. Only the spins in the cluster
connected to that spin are changed. In this work we
restrict ourselves to this updating method, which has
the computational advantage that only one cluster need
be constructed. Thus we investigate a generalization of
the Wolff algorithm: the generalization is that we use
demons with a finite number of energy levels as explained
in Sec. II.
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FIG. 1. Correlation function of the magnetization versus
the number of cluster updates t for the three-dimensional Ising
model at K = 0.221 653 with system size 16%. The results for
n-level demons are denoted by O for n = 2, + for n = 4,
x for n = 6, A for n = 8, and ¢ for n = co. The error bars
do not exceed the symbol size. The lines are a guide to the
eye.

The simulations used a three-dimensional Ising lattice
with periodic boundaries and a linear size of L = 16
lattice units, at the estimated critical point: J/kT =
0.221 653 (see [18] and references cited therein). In Fig. 1
we plot the time dependence of the autocorrelation func-
tion of the magnetization A;(t) = (m(0)m(t))/(m?),
where the time t is counted as the number of cluster up-
dates. The correlation function oscillates with ¢ for small
n. It decreases by an order of magnitude after a few clus-
ter updates for n > 2. This is not the case for the square
of the magnetization. In Fig. 2 we observe that the au-
tocorrelation function of the square of the magnetization
Az(t) = [(m?(0)m?(t)) — (m?)*]/[(m*) — (m?)”] decays
faster for large n. The probability that the cluster con-
tains the majority of the spins is appreciable for small n.
To provide more data with respect to this phenomenon
we show the size distribution of flipped clusters in Fig. 3.
It turns out that the larger the number of levels the closer
the distribution approximates the power law distribution
[19] expected for Wolff dynamics in an infinite lattice

q(z) ~ z—d/yr’ (3)
where q is the number of flipped clusters of size z, d is the
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FIG. 2. Correlation function of the squared magnetization
versus the number of cluster updates t for the three-dimen-
sion . Ising model at K = 0.221653 with system size 163.
The results for n-level demons are denoted by O for n = 2,
+ forn =4, x for n =6, A for n = 8 and o for n = co. The
error bars do not exceed the symbol size.
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FIG. 3. Number of flipped clusters of size = versus cluster
size for the three-dimensional Ising model at K = 0.221653
with system size 163. The distributions are shown after 10°
cluster updates with a dashed line for n = 2, long dashes for
n = 4, a dotted line for n = 6, a dash-dotted line for n = 8,
and a full line for n = co. Bin widths increase from 1 to 20
on the z scale for larger clusters.

dimension of the lattice, and yr is the leading temper-
aturelike exponent. For the smaller values of n there is
a pronounced second maximum in the size distribution.
For n < 4 the clusters contributing to this maximum
contain the majority of the spins.

IV. CONCLUSION

For the critical three-dimensional Ising model we find
that the dynamics using a demon with an infinite number
of levels is most effective from the point of view of corre-
lation times of the square of the magnetization. The size
distribution of flipped clusters shows a maximum for the
smallest clusters and a second maximum for large clus-
ters. Decreasing n enhances the second peak and there-
fore increases the average cluster size. In principle such
an increase might improve the efficiency of the simula-
tion process. However, we observed that, although more
spins are changed on average, this does not decrease the
correlation time. For small n the clusters tend to be-
come so large that they contain most of the spins. The
effect of flipping such a cluster is equivalent to flipping
the complement, which is small. This is a distinct dis-
advantage from the computational point of view. Not
only is the effect of flipping a cluster small, it also takes
many operations to generate such a cluster. Thus demons
with a limited number of levels decrease the efficiency of
the cluster algorithm in the case of the three-dimensional
Ising system. We expect this to apply to the Creutz mi-
crocanonical method as well.
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